

ACOUSTIC REPORT

Noise and Vibration Impact Assessment

Upgrade to Dundas Public School NSW Department of Education

CONFIDENTIAL Revision: 2.0 – PLANNING REPORT | Issued: 21 February 2025 Document name: DUPS-NDY-XX-XX-RP-Y-0001

VERIFICATION

REVISION	DATE ISSUED	PREPARED BY	VERIFIED BY	AUTHORISED BY	COMMENT
1.0	31/10/2024	Jim Wu	Thomas Warren	Jarrad Underwood	DA Issue
1.1	13/12/2024	Jim Wu	Thomas Warren	Jarrad Underwood	Planning Report
2.0	16/02/2025	Jim Wu	Thomas Warren	Jarrad Underwood	Planning Report

STAKEHOLDERS

ROLE	TEAM MEMBER	ORGANISATION
Client Representative	Ant Courtman	Schools Infrastructure NSW
Architect	Niloofar Khodabandehloo	Fulton Trotter
Structural Engineer	John Bea	Meinhardt
Services Engineer	Shrinivas Sapre	NDY
Fire Engineer	Rhys Edwards	ACOR

Table of contents

1	INTRO	ODUCTION	2
	1.1	Authors	2
	1.2	Purpose	2
	1.3	Authority	2
	1.4	Information Sources	2
2	PROJ	IECT INFORMATION	4
	2.1	Site Location and Description	5
	2.2	School Operation Hours	6
	2.3	Sensitive Receivers	6
3	METH	IODOLOGY	8
4	ACO	USTIC ASSESSMENT OF THE EXISTING ENVIRONMENT	9
	4.1	Meteorological Data	9
	4.2	Instrumentation	9
	4.3	Noise Logger Location	9
5	NOIS	E AND VIBRATION CRITERIA	11
	5.1	Local City Council Rules	11
	5.2	NSW Development near Rail Corridors and Busy Roads	12
	5.3	NSW Noise Policy for Industry (NPfI) 2017	12
	5.4	Amenity and Intrusiveness Criteria	13
	5.5	Summary of Operational Noise Criteria	15
	5.6	Construction Noise and Vibration Criteria	15
6	OPER	ATIONAL NOISE & VIBRATION IMPACT ASSESSMENT	23
	6.1	Noise Emission from PA Systems and School Bells	23
	6.2	Noise Emissions from Services	23
	6.3	Operational Vibration	25
7	CON	STRUCTION NOISE & VIBRATION IMPACT ASSESSMENT	26
	7.1	Construction Plant Noise Levels	26
	7.2	Predicted Construction Noise	27
	7.3	Predicted Construction Vibration	30
	7.4	General Recommendations on Construction Noise and Vibration Management	31
8	SUM	MARY OF NOISE AND VIBRATION MITIGATION STRATEGIES	33
	8.1	Noise Mitigation Strategies	33
9	CON	ICLUSIONS	35

1 INTRODUCTION

This Noise and Vibration Impact Assessment has been prepared to support a Review of Environmental Factors (REF) for the Department of Education (DoE) for the upgrade of the Dundas Public School (DPS) (the activity). The purpose of the REF is to assess the potential environmental impacts of the activity prescribed by State Environmental Planning Policy (Transport and Infrastructure) 2021 (T&I SEPP) as "development permitted without consent" on land carried out by or on behalf of a public authority under Part 5 of the Environmental Planning and Assessment Act 1979 (EP&A Act). The activity is to be undertaken pursuant to Chapter 3, Part 3.4, Section 3.37 of the T&I SEPP and in consideration of the stakeholder and community participation plan.

The proposed activity is for upgrades to the existing DPS at 85 Kissing Point Road, Dundas NSW 2117 (the site).

The purpose of this report is to assess any noise and vibration effects of the upgrade works at the school.

1.1 AUTHORS

This report was prepared by Jim Wu, Member of the Australian Acoustical Society (M.A.A.S) and the Acoustic Society of New Zealand (M.A.S.N.Z). Quality assurance was carried out by Thomas Warren, Member of the Acoustic Society of New Zealand (M.A.S.N.Z). NDY is a Member of the Australasian Association of Acoustical Consultants (AAAC).

1.2 PURPOSE

The purpose of this report is to provide acoustic design input into the following areas:

- Baseline noise survey of the area
- Statement of environmental effect such as noise emissions to the boundary from onsite plant equipment
- Construction Noise and vibration assessment to the boundary

1.3 AUTHORITY

Authority to undertake this report was provided by Joe Wood of RP Infrastructure.

1.4 INFORMATION SOURCES

The report is written with reference to the following information. Where a standard or guideline is listed, this does not necessarily mean that the standard has been adopted in its entirety, as it may not all apply to this site.

- NSW Noise Policy for Industry (NPfl) 2017
- NSW Interim Construction Noise Guideline (ICNG) 2009
- NSW Road Noise Policy (RNP) 2011
- NSW Government Department of Planning Development Near Rail Corridors and Busy Roads Interim Guidelines (2008)
- NSW EPA Assessing Vibration: A Technical Guideline 2006
- State Environmental Planning Policy (Transport and Infrastructure) 2021
- AS / NZS 2107:2016 Acoustics, Recommended design sound levels and reverberation times for building interiors
- NSW Department of Environment & Climate Change (DECC), Interim Construction Noise Guideline, 2009
- DEFRA 2005 Data base, including the existing construction noise database on BS 5228-1:2009+A1:2014
 Code of Practice for Noise and Vibration control on construction and open sites Part 1 Noise and Part 2 Vibration
- NSW Interim Construction Noise Guideline 2009
- German DIN 4150: Part 3 1999 "Effect of Vibration on Structure" (DIN 1999)
- Australian Standard AS 2670.2 1990 Evaluation of Human Exposure to Whole Body Vibration Part 2: Continuous and Shock Induced Vibration in Building (1 Hz to 80 Hz)
- British Standard BS 6472 2008 Evaluation of Human Exposure Vibration in Buildings (1 Hz to 80 Hz)
- NSW EFSG Design Guidelines 2020 (Applies to Education)
- Parramatta Council LEP and DCP
- Architectural drawings for 95% Schematic Design, issued by Fulton Trotter Rev 3, dated 09/12/24.
- NDY Electrical drawing set, schematic design, Rev 7, 13/02/25

• NDY Mechanical drawing set, concept design, Rev 5, 18/12/24

2 **PROJECT INFORMATION**

The proposed activity involves upgrades to the existing DPS, including the following:

- Creation of 6 new teaching spaces and 2 learning commons in a single-story building
- Installation of covered walkways connecting the new building to the existing school network
- Landscaping and external works around the new building and eastern entry
- Upgrades to site infrastructure and services to support the new building.

The intent of the activity is to increase the number of permanent teaching spaces (PTS) from 9 to 15 and students from 331 to 391.

Figure 1 below show the scope of works for the proposed activity.

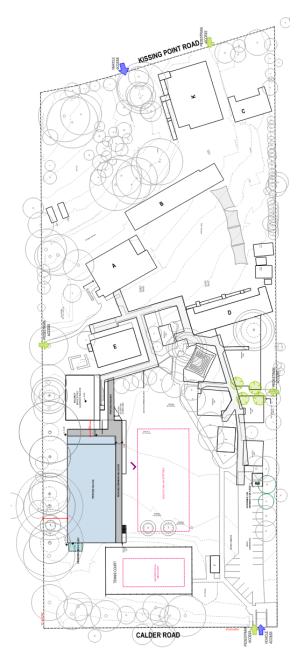


FIGURE 1: PROPOSED SCOPE OF WORKS (SOURCE: FULTON TROTTER ARCHITECTS, PROPOSED SITE PLAN)

2.1 SITE LOCATION AND DESCRIPTION

DPS is located at 85 Kissing Point Road, Dundas. The school site is bound by Kissing Point Road to the north and Calder Road to the south. Kenworthy Street is located parallel to the site to the east as is Saint Andrews Street to the west. The site has an area of 1.99 ha and comprises 1 allotment legally known as Lot 3 DP 610.

The site currently comprises an existing co-education primary (K-6) public school with 9 permanent buildings, 6 demountable structures (1 demountable includes 2 classrooms), interconnected covered walkways, play areas, on-grade parking, sports court and green spaces with mature trees.

Majority of the buildings are 1 storey with only one 2-storey building being Building A (Admin/staff hub and amenities building). Buildings are clustered to the north of the site, with the southern part comprising of a large play area/informal sports oval and a sports court.

FIGURE 2: AERIAL IMAGE OF THE SITE, OUTLINED IN RED (SOURCE: NEARMAP, TAKEN 30 OCTOBER 2024)

The site is surrounded largely by low to high density residential zones as well as Kissing Point Road, which is classified as a SP2 – Classified Road. A map showing the zoning of the site and nearby receivers is shown in Figure 3.

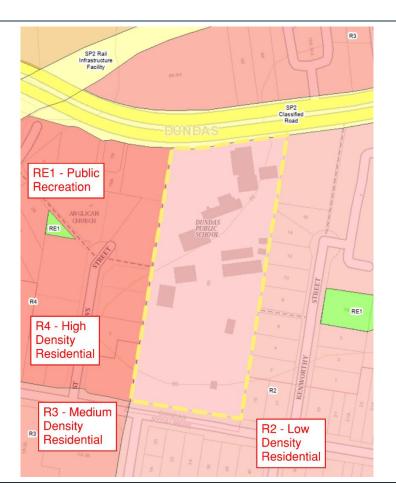


FIGURE 3: SITE LOCATION, WITH THE BOUNDARIES OF THE SCHOOL SHOWN AS THE R2 – LOW DENSITY RESIDENTIAL ZONE

2.2 SCHOOL OPERATION HOURS

We understand that the school operating hours will be the same as existing hours:

- School operating hours (school staff on site): 0800 1600 hours
- Limited operations for morning and evening periods and no night time operations

2.3 SENSITIVE RECEIVERS

The most sensitive receivers for this project are located as per table below:

TABLE 1: SENSITIVE RECEIVERS / PER STAGE (IF APPLICABLE)

RECEIVER	DISTANCE (APPROXIMATE)	TYPE OF RECEIVER / ZONE
11-13 Calder Road	10m	Desidential Preventias
30 Calder Road	48m	Residential Properties

FIGURE 4: SENSITIVE RECEIVERS LOCATIONS. NOTE RECEIVERS SHOWN SHADED IN RED, SCHOOL BOUNDARY SHOWN IN YELLOW, AND EXTENSION APPROXIMATE LOCATION SHOWN IN BLUE

3 METHODOLOGY

This report was prepared using the below methodology:

- Review of the NSW standards, NPfl regulations and Parramatta Council requirements for noise and vibration (Parramatta LEP and DCP).
- Review of the site location, zoning and most affected receivers for all stages.
- Review of possible busy roads near the site and location of rail corridors.
- Selection of logger location was based on:
 - Critical receivers
 - Location of the receivers
 - Coordination with the planners discussing the proposed location.
- Assessment of operating noise and vibration sources, by coordinating with mechanical, electrical, and fire
 protection designers to establish noise sources and operating times. Other consultants involved were
 included such as traffic and garbage collection.
- To assess the operative noise and vibration sources, a comprehensive coordination was made with the mechanical, electrical and fire protection teams to understand their noise sources locations and operating times.
- To assess the construction noise and vibration sources, coordination was done with the client, project manager to understand the approximate construction programme and phases.
 - Note that for construction noise assessment, a preliminary estimation has been conducted using the information existing at the time. If predicted noise levels exceed 75 dBA, a detailed construction noise and vibration management plan will be necessary.

4 ACOUSTIC ASSESSMENT OF THE EXISTING ENVIRONMENT

4.1 METEOROLOGICAL DATA

To verify that the noise data was obtained during suitable meteorological conditions, weather data such as rain and wind speed were obtained from the Weather Underground service (Station ID ISYDNE1248) as a representative site located 300m away from the site.

Noise data is excluded (as per the NSW NPfl methodology) from the results in case of:

- Rain observed during any 15-minute noise measurement period and/or;
- Wind speeds exceeded 5 m/s during any 15-minute noise measuring period.

4.2 INSTRUMENTATION

Noise levels were measured using a Svantek SV 977A and SV 977C sound level meter. The details of this SLM and the calibration details are listed in Table 2.

TABLE 2: NOISE LOGGER AND SOUND LEVEL METER INFORMATION

NOISE LOGGER/SOUND LEVEL METER	ТҮРЕ	SERIAL NUMBER	DATE OF LAST CALIBRATION
Svan 977A	Class 1	46000	13/05/2024
Svan 977C	Class 1	98817	02/08/2024

The equipment calibration was checked prior to, and after the noise survey using a 94 dB external calibration tone at 1 kHz.

The noise loggers were configured to record all relevant noise parameters including background noise (L_{A90}) and equivalent continuous noise levels L_{Aeq}. Samples were recorded at 15-minute A-weighted continuous intervals. The noise monitor responses were set to fast response. The analysers are Class 1 compliant with AS IEC 61672.2-2004.

4.3 NOISE LOGGER LOCATION

The noise logger was deployed along Calder Road, on the sidewalk around 30 Calder Road. This location was selected in consultation with the project team and project planner to be as it was close to the closest sensitive receiver not blocked by a barrier. Logger was deployed between in two rounds – one from 23/09/24 to 27/09/24, and one from 17/10/24 to 28/10/24.

The location of this logger is shown in Figure 5.

FIGURE 5: LOGGERS DEPLOYMENT AREA SHOWN CLOUDED

4.3.1 SHORT TERM NOISE MEASUREMENTS

In addition to the long-term noise monitoring, short term measurements were conducted along Calder Road at the location of logger deployment. The results of these are summarised below:

TABLE 3: EXISTING NOISE LEVELS (ATTENDED), DBA

SHORT TERM MONITORING LOCATION	DATE AND TIME	SHORT TERM ATTENDED MEASUREMENT		
		LAeq	L90	
Along Calder Road	17/10/2024 16:54	63	47	

5 NOISE AND VIBRATION CRITERIA

5.1 LOCAL CITY COUNCIL RULES

Dundas Public School is located within the jurisdiction of the City of Parramatta Council. The Parramatta LEP 2023 states the following aims:

1.2 Aims of Plan

- (1) This Plan aims to make local environmental planning provisions for land in the City of Parramatta in accordance with the relevant standard environmental planning instrument under section 3.20 of the Act.
- (2) The particular aims of this Plan are as follows
 - a. (aa) to protect and promote the use and development of land for arts and cultural activity, including music and other performance arts,
 - a. to protect and enhance the identity, diversity and viability of Parramatta City Centre and recognise its role in the Central River City of the Six Cities Region,
 - b. to create an integrated, balanced and sustainable environment that contributes to environmental, economic, social and physical wellbeing,
 - c. to identify, conserve and promote the City of Parramatta's natural and cultural heritage,
 - d. to protect and enhance the natural environment, including urban tree canopy cover and areas of remnant bushland,
 - e. to ensure development occurs in a way that protects, conserves and enhances natural resources, including waterways, riparian land, surface and groundwater quality and flows and dependent ecosystems,
 - f. to encourage ecologically sustainable development,
 - g. to minimise risk to the community in areas subject to environmental hazards, particularly flooding and bushfire, by restricting development in sensitive areas,
 - h. to improve public access along waterways if the access does not adversely impact the natural value of the waterways,
 - i. to improve public access to, and within, the City of Parramatta and facilitate the use of public transport, walking and cycling,
 - j. to encourage a range of development to meet the needs of existing and future residents, workers and visitors,
 - k. to enhance the amenity and characteristics of established residential areas,
 - I. to retain the predominant role of industrial areas,
 - m. to ensure development does not detract from the economic viability of commercial centres,
 - n. to ensure development does not detract from the operation of local or regional road systems.

While not strictly required as this is not a DA, the Parramatta DCP 2023 has been considered. The Parramatta DCP 2023 outlines acoustic noise and privacy criteria for new developments within the Parramatta Council area. Section 4.5 outlines objectives and controls for educational establishments on neighbouring or nearby properties:

4.5 EDUCATIONAL ESTABLISHMENTS

ACOUSTIC PRIVACY

Objectives

O.06 Minimise noise levels from educational establishments that may impact upon neighbouring or nearby properties.

Controls

- *C.04* The design of the proposed educational establishment should minimise the projection of noise from the various activities anticipated to occur within the site. Adjoining and nearby residents should not be exposed to unreasonable levels of noise arising from the proposed use.
- *C.05* A noise impact assessment statement, prepared by a suitably qualified acoustic engineer, is to be submitted with all applications for development within residential zones or which adjoin residential zones. This should describe hours of operation and predicted noise levels for regular lunch and tea breaks and for special events such as festivals and religious celebrations. Where possible, reference should be made to similar operating uses whether or not within the City.

Note: Consideration will be given to exempt C.05 where applications are received for minor modifications or alterations to existing premises.

5.2 NSW DEVELOPMENT NEAR RAIL CORRIDORS AND BUSY ROADS

These guidelines support specific rail and road provisions of the State Environmental Planning Policy (Transport and Infrastructure) 2021 Clauses 2.100 and 2.120 for rail and busy roads.

The SEPP regulations apply where rail lines are close to the development, or if residential accommodations or similar spaces are a part of the development. The road noise or vibration clause applies for roads with an annual average daily traffic volume of more than 20,000 vehicles.

As there are no rail lines close to the school, clause 2.100 does not apply. There are also no residential accommodation or similar spaces within the development. Kissing Point Road is the only high volume road around the school. Through the NSW Traffic volume viewer, we confirmed that Station Id: 50072, Kissing Point Road has a reported maximum traffic of 17,715 (all vehicles) in 2009. Based on this, we predict that Kissing Point Road is not going to report more than 20,000 vehicles. As a result, the SEPP criteria do not apply to this project.

5.3 NSW NOISE POLICY FOR INDUSTRY (NPFI) 2017

For the purpose of the assessment, the measured noise data was processed into the following time periods:

- Daytime: 0700 to 1800 hrs.
- Evening: 1800 to 2200 hrs.
- Night-time: 2200 to 0700 hrs.

The measured background (L_{A90}) and equivalent continuous (L_{Aeq}) noise levels during these defined time periods. The L_{A90} noise levels presented are *Rating Background Levels* (RBLs), being the median of the background L_{A90} (i.e. of the lowest 10th percentile of samples) in each daytime, evening and night-time measurement period, for each 24-hour period during the noise survey.

The LAeq noise levels presented are the logarithmic average of all the LAeq samples taken in each of the daytime, evening and night-time periods.

TABLE 4: MEASURED NOISE LEVELS FOR NOISE LOGGERS, DBA

		Ν	NOISE LEVEL, DB RE 20 µPA		
LOCATION	NOISE INDEX	Daytime 0700 to 1800	Evening 1800 to 2200	Night - time 2200 to 0700	
Along Caldor Poad	L _{A90} (RBL)	44	41	37	
Along Calder Road	LAeq,period	64	62	57	

5.4 AMENITY AND INTRUSIVENESS CRITERIA

The NSW NPfl provides assessment methodologies, criteria and detailed information on the assessment of environmental noise emissions in NSW. The NSW NPfl criteria for noise sources consider two (2) components:

- Controlling intrusive noise impacts for residential receivers. Assessing intrusiveness generally requires noise
 measurements to quantify background (LA90) noise levels at a location considered representative of the
 most potentially affected residential receiver(s). The intrusiveness criterion essentially means that the
 equivalent continuous noise level (LAeq) of the source(s) under consideration should be controlled to not
 exceed background noise levels by more than 5 dB(A).
- Maintaining noise amenity for various categories of land use (including residential receivers and other sensitive receivers). The amenity criterion is based on the sensitivity of a particular land use to industrial-type noise. The recommended amenity noise levels detailed in Table 2.2 of NSW NPfl represent the objective for total industrial noise at a receiver location, whereas the project amenity noise level represents the objective for noise from a single industrial development at a receiver location. This is to ensure that industrial noise levels (existing plus new) remain within the recommended amenity noise levels for an area. The project amenity criteria for each new source of industrial noise is equalled to recommended amenity noise level minus 5dB(A).
- A +3dB(A) to be added to project amenity noise level for conversion from a period level to a 15-minutes level. Where the resultant project amenity noise level is 10dB or more below the existing industrial noise level, the project amenity noise levels can be set at 10 dB below existing industrial noise levels if it can be demonstrated that existing industrial noise levels are unlikely to reduce over time.

TYPE OF RECEIVER	INDICATIVE NOISE AMENITY AREA	PERIOD OF TIME	L _{AEQ} DB(A)	AMENITY CRITERIA LAEQ DB(A) – 5 DB + 3 DB
	Urban	Day 7:00 to 18:00	60	58
Residence		Evening 18:00 to 22:00	50	48
		Night 22:00 to 7:00	45	43

TABLE 5: PROJECT SPECIFIC NSW NPFI AMENITY CRITERIA / TAKEN FROM TABLE 2.2 NPFI

The NSW NPfl characterise the above areas as per the below description:

Receiver category	Typical planning zoning – standard instrument*	Typical existing background noise levels	Description
Rural residential	RU1 – primary production RU2 – rural landscape RU4 – primary production small lots	Daytime RBL <40 dB(A) Evening RBL <35 dB(A) Night RBL <30 dB(A)	Rural – an area with an acoustical environment that is dominated by natural sounds, having little or no road traffic noise and generally characterised by low background noise levels. Settlement patterns would be typically sparse.
	R5 – large lot residential E4 – environmental living		Note: Where background noise levels are higher than those presented in column 3 due to existing industry or intensive agricultural activities, the selection of a higher noise amenity area should be considered.
Suburban residential	RU5 – village RU6 – transition	Daytime RBL<45 dB(A) Evening RBL<40 dB(A)	Suburban – an area that has local traffic with characteristically intermittent traffic flows or with some limited commerce or industry. This area often has the
	R2 – low density residential R3 – medium density residential E2 – environmental conservation E3 – environmental management	Night RBL <35dB(A)	following characteristic: evening ambient noise levels defined by the natural environment and human activity.
Urban residential	R1 – general residential R4 – high density residential B1 – neighbourhood centre (boarding houses and shop-top housing) B2 – local centre (boarding houses) B4 – mixed use	Daytime RBL> 45 dB(A) Evening RBL> 40 dB(A) Night RBL >35 dB(A)	 Urban – an area with an acoustical environment that: is dominated by 'urban hum' or industrial source noise, where urban hum means the aggregate sound of many unidentifiable, mostly traffic and/or industrial related sound sources has through-traffic with characteristically heavy and continuous traffic flows during peak periods is near commercial districts or industrial districts has any combination of the above.

FIGURE 6: NPFI EXTRACT - TABLE 2.3 DETERMINING WHICH OF THE RESIDENTIAL RECEIVER CATEGORIES APPLIES

With the ambient RBLs measured and presented in Table 4, the urban area description above is the most suitable for the project.

The NPfl recommends "Intrusive noise levels are only applied to residential receivers (residences)". For other receiver types identified in Table 2.2 (Table 5 of this report), only the amenity levels apply. The project amenity and intrusive noise levels are be listed below.

TABLE 6	PRO IECT INTRUSIVENESS A	ND AMENITY NOISE CRITERIA
IT OLL O.		

	NOISE LEVEL, LEQ, 15MINS [DBA]		
LOCATION	Daytime 0700 to 1800	Evening 1800 to 2200	Night - time 2200 to 0700
Along Caldor Poad	Project	Amenity Assessment, L	Aeq, 15min
Along Calder Road	58	52	47

LOCATION	Daytime 0700 to 1800	Evening 1800 to 2200	Night - time 2200 to 0700	
	Project In	, LAeq, 15min		
	49	46	42	

5.4.1 DETERMINATION OF PROJECT SPECIFIC NOISE TRIGGER LEVEL (PNTL)

The Project Noise Trigger Levels (PNTL) are the most stringent noise levels of the NSW NPfl project intrusiveness and project amenity noise levels for day, evening and night-time periods and are project specific, as shown below:

TABLE 7: EXTERNAL PROJECT NOISE TRIGGER LEVEL (PNTL) FOR OPERATION NOISE

LOCATION / AFFECTED	TIME	DESCRIPTOR	EXTERNAL PNTL [DBA]	
	0700 to 1800	LAeq, Day	49	
Along Calder Road	1800 to 2200	LAeq, Evening	46	
	2200 to 0700	LAeq, Night	42	

5.5 SUMMARY OF OPERATIONAL NOISE CRITERIA

TABLE 8: SUMMARY OF NOISE CRITERIA

REGULATION	CRITERIA
Council LEP / DCP	• Minimise the projection of noise from the various activities anticipated to occur within the site.
PTNL (NPfl 2017)	• PTNL Day: 49 dBA / Evening: 46 dBA / Night: 42 dBA

5.6 CONSTRUCTION NOISE AND VIBRATION CRITERIA

5.6.1 INTERIM CONSTRUCTION NOISE GUIDELINE

The NSW Interim Construction Noise Guideline was developed by the NSW-Department of Environment & Climate Change DECC, NSW which incorporates the EPA. The Guideline contains detailed procedures for the assessment and management of construction noise impacts.

The guideline presents two ways of assessing construction noise impacts – the quantitative method, which is generally suited to longer term construction works and the qualitative method, which is generally suited to short term works (usually not more than 3 weeks) such as infrastructure maintenance.

It is expected that the length of the construction works associated with the development would be more than 3 weeks and therefore a quantitative method has been used for this assessment.

Table 9 set out the management levels for noise at residence and sensitive land uses, respectively. Restrictions to the hours of construction may apply to activities that generate noise at residences above the 'highly noise affected management level' which is >75dBA.

Affected properties above 75 dBA might require community consultation and a Construction Noise & Vibration Management Plan (CNVMP). Based on the RBL of 38 – 39 dBA in the daytime, the recommended noise management level during all aspects of the construction program are summarised in Table 10 below.

TABLE 9: NOISE ASSESSMENT GUIDELINES AT AFFECTED USING QUANTITATIVE ASSESSMENT

RECOMMENDED HOURS	EXTERNAL NOISE MANAGEMENT LEVEL (NML) Leq.15MIN [dBA]	HOW TO APPLY		
Recommended standard hours	Noise Affected 54 dB(A) (44 + 10)	The noise affected level represents the point above which there may be some community reaction to noise. Where the predicted or measured L _{Aeq (15 minutes)} noise level is greater than the affected level, the proponent should apply all feasible and reasonable [*] work practices to meet the noise affected level. The proponent should also inform all potentially impacted residents of the nature of works to be carried out, the expected noise levels and duration, as well as contact details		
Monday – Friday 7am to 6pm Saturday 8am to 1pm No work on Sundays or Public Holidays	Monday - Friday 7am to 6pm Saturday 8am to 1pm No work on Sundays or Public Holidays Highly noise affected 75 dB(A) The highly noise affected level represent Where noise is above this level, the r determining or regulatory) may requirestricting hours that the very noisy of into account: 1. Times identified by the less sensitive to noise (s school for works near se mid-afternoon for work 2. If the community is pre period of construction			
Outside Recommended standard hours	42 dBA (37 + 5)	on construction times.A strong justification would typically be required for works outside the recommended standard hours.The proponent should apply all feasible and reasonable wor practices to meet the noise affected level.Where all feasible and reasonable practices have been applied and noise is more than 5 dB(A) above the noise affected level, the proponent should negotiate with the community.For guidance on negotiating agreements see section 7.22		

*Section 6, 'work practices' of the Interim Construction Noise Guideline, states: "there are no prescribed noise controls for construction works. Instead, all feasible and reasonable work practices should be implemented to minimise noise impacts. This approach gives construction site managers and construction workers the greatest flexibility to manage noise".

Definitions of the terms feasible and reasonable are given in Section 1.4 of the Guideline.

The Interim Construction Noise Guideline recommends the following noise levels for land uses other than residential, as shown in Table 10 below. The external noise levels should be assessed at the most affected occupied point on the premises. A conservative estimate of 10 dB is generally applied as the difference between the external and internal level for noise sensitive uses that require internal noise measurement.

5.6.2 NOISE MANAGEMENT LEVELS

Noise Management Levels (NML) associated with the construction works on the project site are presented in Table 10.

TABLE 10: CONSTRUCTION NOISE MANAGEMENT LEVELS, LEQ 15MIN

RECEIVERS	RECOMMENDED HOURS	PERIOD	RBL LA90,15MINS [dBA]	EXTERNAL NOISE MANAGEMENT LEVEL [dBA]
Residential	Day time (standard construction hours)	When in use	44	(44 + 10) = 54 dB(A) (Noise affected) 75 dB(A) (highly noise affected)

For other sensitive land users different from residential, the below table applies:

Land use	Management level, L _{Aeq (15 min)} (applies when properties are being used)
Classrooms at schools and other educational institutions	Internal noise level 45 dB(A)
Hospital wards and operating theatres	Internal noise level 45 dB(A)
Places of worship	Internal noise level 45 dB(A)
Active recreation areas (characterised by sporting activities and activities which generate their own noise or focus for participants, making them less sensitive to external noise intrusion)	External noise level 65 dB(A)
Passive recreation areas (characterised by contemplative activities that generate little noise and where benfefits are compromised by external noise intrusion, for example, reading, meditation)	External noise level 60 dB(A)
Community centres	Depends on the intended use of the centre. Refer to the recommended 'maximum' internal levels in AS2107 for specific uses.

FIGURE 7: EPA CONSTRUCTION NOISE AND VIBRATION GUIDELINE, 2016 / EXTRACT NOISE AT SENSITIVE USERS

5.6.3 CONSTRUCTION VIBRATION CRITERIA

The effects of construction vibration upon buildings can be separated into three main categories:

Perceptibility of the occupants to the vibration and the possibility of them being disturbed or annoyed. Vulnerability of the building structures to vibration induced damaged. Vulnerability of the contents of the building that includes types of equipment, activities and processes.

5.6.3.1 Human Response to Vibration

Humans are very sensitive to vibration, and they can be disturbed, annoyed and have their work activities interfered with if the levels are too high. The Interim Construction Noise Guideline references "Assessing Vibration: a technical guideline" (Vibration Guideline) issued by the Department of Environment and Conservation NSW for measurement and assessment of vibration. The Vibration Guideline provides vibration criteria for continuous, impulsive and intermittent vibration

Continuous vibration	Impulsive vibration	Intermittent vibration
Machinery, steady road traffic, continuous construction activity (such as tunnel boring machinery).	Infrequent: Activities that create up to 3 distinct vibration events in an assessment period, e.g. occasional dropping of heavy equipment, occasional loading and unloading. Blasting is assessed using ANZECC (1990).	Trains, nearby intermittent construction activity, passing heavy vehicles, forging machines, impact pile driving, jack hammers. Where the number of vibration events in an assessment period is three or fewer this would be assessed against impulsive vibration criteria.

The criteria are discussed in more detail in the following sections.

5.6.3.2 Continuous and impulsive vibration (1-80 Hz)

According to the Vibration Guideline for continuous and impulsive vibration, assessment of impact should be considered on the basis of weighted root-mean-square acceleration values and results are to be compared against the following preferred and maximum values given for each orthogonal axis. The frequency weightings as per BS6841:1987 (reproduced in Appendix B3 of the guideline) are to be applied to the RMS measurement values (1-80Hz).

The criteria in the Vibration Guideline are derived from the limiting values of the assessment curves and multiplying factors from BS 6472:1992 (the curves are no longer referenced in the superseded version of the standard BS 6472:2008).

	Assessment period ¹	Preferred v	alues	Maximum	Maximum values	
Location		z-axis	x- and y-axes	z-axis	x- and y-axes	
Continuous vibration						
Critical areas ²	Day- or night-time	0.0050	0.0036	0.010	0.0072	
Residences	Daytime	0.010	0.0071	0.020	0.014	
	Night-time	0.007	0.005	0.014	0.010	
Offices, schools, educational institutions and places of worship	Day- or night-time	0.020	0.014	0.040	0.028	
Workshops	Day- or night-time	0.04	0.029	0.080	0.058	
Impulsive vibration						
Critical areas ²	Day- or night-time	0.0050	0.0036	0.010	0.0072	
Residences	Daytime	0.30	0.21	0.60	0.42	
	Night-time	0.10	0.071	0.20	0.14	
Offices, schools, educational institutions and places of worship	Day- or night-time	0.64	0.46	1.28	0.92	
Workshops	Day- or night-time	0.64	0.46	1.28	0.92	

Table 2.2 Preferred and maximum weighted rms values for continuous and impulsive vibration acceleration (m/s²) 1–80 Hz

1 Daytime is 7.00 am to 10.00 pm and night-time is 10.00 pm to 7.00 am

2 Examples include hospital operating theatres and precision laboratories where sensitive operations are occurring. There may be cases where sensitive equipment or delicate tasks require more stringent criteria than the human comfort criteria specified above. Stipulation of such criteria is outside the scope of this policy, and other guidance documents (e.g. relevant standards) should be referred to. Source: BS 6472–1992

The Vibration Guideline notes "Activities should be designed to meet the preferred values where an area is not already exposed to vibration. Where all feasible and reasonable measures have been applied, values up to the maximum value may be used if they can be justified. For values beyond the maximum value, the operator should negotiate directly with the affected community. Situations exist where vibration above the preferred values can be acceptable, particularly for temporary disturbances and infrequent events of short-term duration. An example is a construction or excavation project."

5.6.3.3 Intermittent vibration (1-80 Hz)

According to the Vibration Guideline for intermittent vibration, assessment of impact should be considered on the basis of vibration dose values (VDV). Acceptable values of vibration dose are given as follows.

Location	Daytime ¹	Daytime ¹		
	Preferred value	Maximum value	Preferred value	Maximum value
Critical areas ²	0.10	0.20	0.10	0.20
Residences	0.20	0.40	0.13	0.26
Offices, schools, educational institutions and places of worship	0.40	0.80	0.40	0.80
Workshops	0.80	1.60	0.80	1.60

Table 2.4 Acceptable vibration dose values for intermittent vibration (m/s^{1.75})

1 Daytime is 7.00 am to 10.00 pm and night-time is 10.00 pm to 7.00 am.

2 Examples include hospital operating theatres and precision laboratories where sensitive operations are occurring. These criteria are only indicative, and there may be a need to assess intermittent values against the continuous or impulsive criteria for critical areas. Source: BS 6472–1992

5.6.3.4 Vibration Criteria – Building Contents and Structure

The vibration effects on the building itself are assessed international standards as follows:

- For transient vibration: British Standard BS 7385: Part 2 1993 "Evaluation and measurement for vibration in buildings Part 2: Guide to damage levels from ground borne vibration" (BSI 1993); and
- For continuous or repetitive vibration: German DIN 4150: Part 3 1999 "Effects of Vibration on Structure" (DIN 1999).

5.6.3.5 Standard BS 7385 Part 2 – 1993

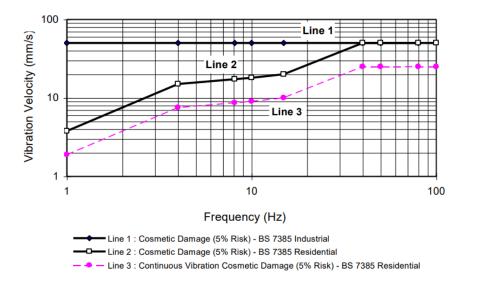

For transient vibration, as discussed in standard BS 7385 Part 2-1993, the criteria are based on peak particle velocity (mm/s) which is to be measured at the base of the building. These are summarised in Table 11 and illustrated in Figure 8.

TABLE 11: TRANSIENT VIBRATION CRITERIA AS PER STANDARD BS 7385 PART 2 - 1993

Line in	Type of Building	Peak Component Particle Velocity in Frequency Range of Predominant Pulse			
		4 Hz to 15 Hz	15 Hz and Above		
1	Reinforced or framed structures Industrial and heavy commercial buildings	50 mm/s at 4 Hz and above	-		
2	Unreinforced or light framed structures Residential or light commercial type buildings	15 mm/s at 4 Hz increasing to 20 mm/s at 15 Hz	20 mm/s at 15 Hz increasing to 50 mm/s at 40 Hz and above		

Standard BS 7385 Part 2 – 1993 states that the value in **Table 11** relate to transient vibration which does not cause resonant response in buildings. Where the dynamic loading caused by continuous vibration events is such that it results in dynamic magnification due to resonance (especially at the lower frequencies where lower guide values apply), then the values in **Table 11** may need to be reduced by up to 50% (refer to Line 3 in Figure 8).

FIGURE 8 – BS 7385 PART 2 – 1993, GRAPH OF TRANSIENT VIBRATION VALUES FOR COSMETIC DAMAGES

In the lower frequency region where strains associated with a given vibration velocity magnitude are higher, the recommended values corresponding to Line 2 are reduced. Below a frequency of 4 Hz, where a high displacement is associated with the relatively low peak component particle velocity value, a maximum displacement of 0.6 mm (zero to peak) is recommended. This displacement is equivalent to a vibration velocity of 3.7 mm/s at 1 Hz.

The standard also states that minor damage is possible at vibration magnitudes which are greater than twice those given in **Table 11**, and major damage to a building structure may occur at values greater than four times the tabulate values.

Fatigue considerations are also addressed in the standard and it is concluded that unless the calculation indicated that the magnitude and number of load reversals is significant (in respect of the fatigue life of building materials) then the values in **Table 11** should not be reduced for fatigue considerations.

5.6.3.6 Structural Response to Vibration - German Standard DIN 4150-3:1999

The German Standard DIN 4150-3 Structural Vibration Part 3: Effects on building and structures is commonly used in Australia to evaluate the effects of vibration on structures primarily used for static loading.

The response of a building to vibration is affected by several factors that include its type of foundation, the underlying ground conditions, its construction and the state of the building. Please note the construction vibration limits are designed to ensure the structural integrity of nearby buildings and are not for human comfort. the limits are well above perceptibility.

According to DIN 4150 short term vibration refers to vibration which does not occur often enough to cause structural fatigue, and which does not produce resonance in the structure being evaluated. Long-term vibration refers to all types of vibration not covered by the definition of 'short-term vibration'. The criteria for short-term and long-term vibration are listed in the following.

5.6.3.7 Guideline Values for evaluation of short-term vibration - DIN 4150-3:1999

The vibration limits of table 1 in DIN 4150-3:1999 (replicated in **Table 12** below) refer to the evaluation of the effects of short-term vibration on structures.

It should however be noted that compliance with the vibration limits to avoid structural damage of buildings, cannot provide certainty. If damage occurs despite compliance with the standard, it is to be assumed that other causes are responsible, however, further investigations are necessary. And on the other hand, exceeding the limits does not necessarily lead to damage.

TABLE 12: DIN 4150-3 CONSTRUCTION VIBRATION LIMITS - SHORT TERM

	GUIDELINE VALUES FOR VIBRATION VELOCITY (MM/S)					
	Vibratic	Vibration at				
TYPE OF STRUCTURES	1Hz to 10Hz	10 to 50 Hz	50 to 100Hz (and above)	horizontal plane of highest floor at all frequencies		
Buildings for commercial purposes, Industrial building and building of similar design	20	20 to 40	40 to 50	40		
Dwellings and buildings of similar design and/or occupancy	5	5 to 15	15 to 20	15		
Structures that because of their particular sensitivity to vibration, cannot be classified as above and are of great intrinsic value (e.g. listed buildings under preservation order)	3	3 to 8	8 to 10	8		

5.6.3.8 Guideline Values for evaluation of long-term vibration - DIN 4150-3:1999

The vibration limits of Table 3 in DIN 4150-3:1999 refer to the evaluation of the effects of long-term vibration on structures.

The criteria are the peak particle velocities measured on the uppermost full storey of any building not related to the site and are listed in **Table 13**.

According to the standard, exceeding the values listed below does not necessarily lead to damage.

If a building is subject to harmonic vibration, then maximum values can occur in floors other than the top floor, or in the foundation. The values given also apply in these cases.

TABLE 13: DIN 4150-3 CONSTRUCTION VIBRATION LIMITS - LONG TERM

TYPE OF STRUCTURES	GUIDELINE VALUES FOR VELOCITY, VI, IN MM/S OF VIBRATION IN HORIZONTAL PLANE OF HIGHEST FLOOR, AT ALL FREQUENCIES
Buildings for commercial purposes, Industrial building and building of similar design	10
Dwellings and buildings of similar design and/or occupancy	5
Structures that because of their particular sensitivity to vibration, cannot be classified as above and are of great intrinsic value (e.g. listed buildings under preservation order)	2.5

5.6.4 SUMMARY OF CONSTRUCTION NOISE AND VIBRATION CRITERIA

Construction noise criteria for the areas surrounding the project are NML levels (between RBL + 10 dBA and max. 75 dBA) for standard construction hours. As per below:

- Logger 1 receivers:
 - Recommended standard hours: Noise affected 54 dBA / Highly noise affected 75 dBA
- School building receivers: closest blocks E and F 45 dBA (internal) / 55 dBA (external)

We consider that for this project the vibration criteria will be as per DIN 4150 – 3:1999 construction vibration limits – long term. Residential receivers in the area will have a peak particle velocity criterion of 5 mm/s and commercial buildings of 10 mm/s peak particle velocity criteria.

The construction noise assessment will utilize the information provided by the team at this stage and conduct a preliminary construction noise and vibration assessment. As per the applicable Guideline, if the predicted levels from this assessment do not exceed the limits, a future Construction noise and vibration management plan is not required.

6 OPERATIONAL NOISE & VIBRATION IMPACT ASSESSMENT

The following sections present our assessment of noise emission impacts from operational noise sources from the project. Predicted noise levels and associated mitigation measures are also provided according to the noise assessment and criteria.

It should be noted that this report has been prepared at a very early stage of the project. The details are expected to change through detailed design, however what has been presented is the extent of the current design which is understood to not differ significantly to the final design.

6.1 NOISE EMISSION FROM PA SYSTEMS AND SCHOOL BELLS

The school PA or bells are a part of the existing noise emissions from the school. With activities, it is understood that any PA or bell systems will be extended to the existing in order to cover the new building as required. These may be located on the new building and should be oriented to direct sound away from the neighbours where possible.

6.2 NOISE EMISSIONS FROM SERVICES

6.2.1 MECHANICAL SERVICES

According to the NDY mechanical services concept, the new building will require additional outdoor HVAC condenser units. These are expected to be located next to the building, facing out to Calder Rd. It is understood that 4 outdoor units are expected to be located in this area and that they will operate during the school operating hours (i.e. only during daytime hours).

In addition to this, two fans are expected to be installed along with fresh air inlets for the FCUs serving the rooms. The fans are generally located to the northern edge of the building (along the toilets).

The location of the units is shown in Figure 9.

FIGURE 9: LOCATION OF NEW PLANT, SHOWN HERE CLOUDED.

We understand that final equipment selections are not available at this stage (and will not likely be available until the detailed design phase), however a preliminary mechanical equipment assessment was conducted with equipment noise data used for similar projects. Along with the sensitive residential receivers, the NPfl categorises classrooms as sensitive spaces and requires a maximum internal noise limit of 45dBA to be met by the project. In order to ensure that the mechanical plant does not impact the existing classrooms and comply with the NPfl limit of internal noise 45dBA, the assessment was also done for noise propagated from the plant to

the closest existing Block F which is estimated to be approximately 18m away from the mechanical plant (based on current layout of new building location).

Mechanical noise sources propagated to critical receivers is shown in table below:

EQUIPMENT	SWL SOUND POWER LEVEL (dB) PER FREQUENCY BAND (HZ)						DBA		
	63	125	250	500	1000	2000	4000	8000	DDA
Daikin REYQ20BYM	80	81	77	70	66	60	55	47	65
Total ODU noise (4x units)	86	87	83	76	72	66	61	53	79
Extract fan (TEF-01)	68	63	64	62	61	60	57	49	66
Supply fan (OAF-01)	57	53	59	60	57	55	53	47	63
Total fan noise (2x units)	68	63	65	64	62	61	58	51	68
Total noise for 4x ODUs and 2x fans (SPL at 1m)	78	79	75	68	64	59	55	47	71

It is assumed that a total of of 4x ODUs and 2x extract fans are located at 14m and 48m to the residential sensitive receivers at 11-13 Calder Rd and 30 Calder Rd respectively. For Block F, this is assumed to be a total of 2x extract fans located 12m away. This is expected to be very conservative as the fan locations vary and are not be concentrated at the closest location to both receivers (which is what has been assumed for the calculation). Based on these the following noise levels are predicted:

TABLE 15: MECHANICAL SERVICES NOISE PROPAGATED INTO CRITICAL RECEIVERS

RECEIVER	NOISE LIMIT	ESTIMATED NOISE LEVEL (OUTSIDE) / (SPL)
11-13 Calder Rd (14m)	54 dB(A) (PTNL for Day)	48 dB(A)
30 Calder Rd (48m)	54 dB(A) (PTNL for Day)	34 dB(A)
Existing Block F (18m)	45 dB(A) Internally 55 dB(A) Externally ¹	43 dB(A)

Daytime PNTLs are the noise limits selected here as the new building is only expected to be running during daytime hours.

The above levels are propagated outside to the closest receiver's façade. The noise from the HVAC plant will meet the relevant targets in the NPfI without any additional mitigation.

During mechanical equipment selection, it is recommended to use the utilize the assumed equipment sound data as a guideline and to ensure that the combined sound pressure levels at 1m for the plant do not exceed 71 dBA. If they exceed, further acoustic treatment will be required to ensure noise limits as per the NPfI are met. This could mean selecting attenuators or reselecting fans.

¹ A nominal 10 dB reduction has been applied for the façade of the building, so the external target is 55 dB(A)

6.2.2 OTHER SERVICES

As the activity is small in scale, no major other services are expected to be required.

6.3 OPERATIONAL VIBRATION

For controlling vibration emissions on mechanical plant (VRF, condensers and similar), it would be recommended that all condensers are installed on Embelton or Mason Industries pads or equal. This would ensure compliance with the NSW EPA document Assessing Vibration: A technical guideline. However, as ODU units are small and far away from any nearby sensitive receivers, we do not consider this will be a noticeable impact on school grounds or residential areas.

7 CONSTRUCTION NOISE & VIBRATION IMPACT ASSESSMENT

The construction methodology details are not fully confirmed as a contractor has not been engaged at this very early phase of design, however the following are understood:

- Construction will involve earthworks, concrete pad footing works, and construction and fitout works.
- Confirmation was obtatined from the structural team that piling works are not required. Concrete pad footings will be used for the foundations of the structure.

Construction hours are not confirmed, however it is recommended that the following hours are adopted to avoid times where construction noise criteria are more stringent:

- Weekdays 0700 to 1800
- Saturdays 0800 to 1300
- Sundays and public holidays: no work

7.1 CONSTRUCTION PLANT NOISE LEVELS

Minimum construction equipment for the estimated construction phases is described below: TABLE 16 TYPICAL EXTERNAL NOISE LEVELS OF DEMOLITION AND CONSTRUCTION MACHINERY/ACTIVITY

ITEM #	ACTIVITY/MACHINERY	SOURCE AND REFERENCE NUMBER (BS 5228 – 1:2009)	L _{eq} SOUND PRESSURE LEVEL AT 10m (dBA)			
Excavation and	Demolition					
1	Tracked excavator 14t / 66kW	Table C2 Ref 25	69			
2	Vibratory Roller passby, 3t / 20kW	Table C5 / Ref 27	73			
3	Dumper truck 9T / 75 kW	Table C4 / Ref 4	76			
Construction & F	itout Works					
4	Handheld circular saw 3 Kw	Table C4 / Ref 72	79			
5	Handheld cordless nail gun	Table C4 / Ref 95	73			
6	Diesel generator	Table C4 / Ref 76	61			
Structural Works ²						
7	Tracked excavator 14t / 66kW	Table C2 Ref 25	69			
8	Dumper truck 9T / 75 kW	Table C4 / Ref 4	76			
9	Mini piling rig (rock bolt) 250mm auger	Table C3 / Ref 18	74			
10	Concrete pump + cement mixer truck (discharging) 8T / 350 bar	Table C4 / Ref 24	68			

Notes:

• The above equipment shows every equipment noise level as per BS 5228 – 1:2009, the equipment inclusion in each phase is the general equipment that is used in this type of construction. A more detailed assessment is only required if the preliminary assessment exceeds 75 dBA, if not, the above assessment is adequate for this type of report.

² Currently the structural works methodology have not been confirmed, however we understand that either piling or pad footings will be used. For this prediction, piling has been assumed as the worst-case scenario.

• NSW DECC 2009 Construction noise Guideline quotes on Appendix B Equipment Noise levels, the DEFRA 2005 database, which includes the above referenced BS 5228 – 1:2009 noise levels.

7.2 PREDICTED CONSTRUCTION NOISE

7.2.1 RESIDENTIAL RECEIVERS

Based upon the above plant sound power levels, predicted construction noise levels for the various works phases are presented below:

TABLE 17 PREDICTED CONSTRUCTION NOISE LEQ, 15MIN TO THE RESIDENTIAL RECEIVERS

RECEIVERS	RECOMMENDED HOURS	PERIOD	PREDICTED CONSTRUCTION NOISE LEVEL	EXTERNAL NOISE Management level	
Excavation and De	molition Phase				
11-13 Calder Rd	Monday Friday 7am to 6pm		65 dB(A)	54 dB(A)(noise	
	— Saturday 8am to 1pm	Day		affected)	
30 Calder Rd	No work on Sundays or Public Holidays		56 dB(A)	75dB(A) (highly nois affected)	
Construction & Fito	ut Works Phase	1		1	
11-13 Calder Rd	Monday Friday 7am to 6pm	Day	64 dB(A)	54 dB(A)(noise	
	Saturday 8am to			affected)	
30 Calder Rd	1pm No work on Sundays or Public Holidays		53 dB(A)	75dB(A) (highly nois affected)	
Structural Works Ph	ase	1	I		
11-13 Calder Rd	Monday Friday 7am to 6pm		67 dB(A)	54 dB(A)(noise	
	Saturday 8am to	Day		affected)	
30 Calder Rd	1pm Calder Rd No work on Sundays or Public Holidays		56 dB(A)	75dB(A) (highly noise affected)	

NB: Noise levels apply at the property boundary that is most exposed to construction noise, and at a height of 1.5 m above ground level. If the property boundary is more than 30 m from the residence, the location for measuring or predicting noise levels is at the most noise-affected point within 30 m of the residence. Noise levels may be higher at upper floors of the noise affected residence.

These noise levels are based on the following mitigation measures and conditions:

- All equipment during the excavation and demolition phase are assumed to have a 50% on-time, except the dumper truck which is assumed to have a 25% on-time.
- All equipment during the construction and fitout works phase are assumed to have a 50% on-time, except any circular saws which are assumed to have a 25% on-time.
- All equipment during the structural works phase are assumed to have a 50% on-time, except the dumper truck which is assumed to have a 25% on-time
- A 2m noise barrier around the construction site has been assumed for the predictions above. An existing fence is located between the school and 11-13 Calder Rd, this is generally expected to provide this

reduction on this side however if required a construction barrier should be installed at this location for the duration of the construction works.

- Construction hours will only be during day-time.
- Construction site is large and not all machinery is expected to be located at the same distance when assessing on a particular boundary.
- Not all machinery are to be working simultaneously.
- The above estimations are the critical scenario for construction noise and assume a worst-case scenario where the equipment is generally located at the closest location to the receivers.

Based on this assessment, construction noise levels during all stages phases are predicted below 75 dB(A). Under the ICNG, there is no requirements for construction noise to be managed as part of a construction noise and vibration management plan.

7.2.2 SCHOOL RECEIVERS

The construction is expected to affect receivers on school grounds located close to the site of construction. This primarily impacts Blocks E and F which are located 28m and 6m away from the construction location respectively.

Based upon the above plant sound power levels, predicted construction noise levels for the various works phases are presented below:

TABLE 18 PREDICTED CONSTRUCTION NOISE LEQ, 15MIN TO BLOCK E

EQUIPMENT	DISTANCE [M]	ON-TIME	PREDICTED CONSTRUCTION Noise level	EXTERNAL NOISE Management Level (external) ³	MITIGATION MEASURES	
Excavation and Der	nolition Ph	ase				
Tracked Excavator	30	50%	49 dB(A)		2m Noise barrier between plant and Block E	
Vibratory Roller	30	50%	51 dB(A)	45 dBA (internal) / 55 dBA (external)	2m Noise barrier between plant and Block E	
Dump Truck	62	25%	51 dB(A)		2m Noise barrier between plant and Block E	
Total			55 dB(A)	45 dBA (internal) / 55 dBA (external)		
Construction & Fitou	t Works Ph	ase				
Circular Saw		25%	55 dR(A)		2m Noise barrier between plant and Block E	
	42	23%	55 dB(A)	45 dBA (internal) /	Minimum 20m setback distance	
Nail Gun	42	50%	53 dB(A)	55 dBA (external)	2m Noise barrier between plant and Block E	
Diesel Generator	42	50%	45 dB(A)		2m Noise barrier between plant and Block E	
Total			57 dB(A)	45 dBA (internal) / 55 dBA (external)		

³ The EPA Construction Noise and Vibration Guidelines set internal noise limits within classrooms to be 45 dBA internally. A 10 dB reduction has been assumed for the façade, giving an external noise limit of 55 dBA.

EQUIPMENT	DISTANCE [M]	ON-TIME	PREDICTED CONSTRUCTION NOISE LEVEL	EXTERNAL NOISE Management Level (external) ³	MITIGATION MEASURES
Structural Works Phase					
Tracked Excavator	30	50%	48 dB(A)		2m Noise barrier between plant and Block E
Dump truck	62	25%	50 dB(A)	45 dBA (internal) /	2m Noise barrier between plant and Block E
Mini piling rig	30	50%	52 dB(A)	55 dBA (external)	2m Noise barrier between plant and Block E
Concrete Pump	47	50%	47 dB(A)		2m Noise barrier between plant and Block E
Total		56 dB(A)	45 dBA (internal) / 55 dBA (external)		

TABLE 19 PREDICTED CONSTRUCTION NOISE $\mathsf{L}_{\mathsf{EQ},15\mathsf{MIN}}$ TO BLOCK F

EQUIPMENT	DISTANCE [M]	ON-TIME	PREDICTED CONSTRUCTION Noise Level	EXTERNAL NOISE Management Level (External) ³	MITIGATION MEASURES	
Excavation and Der	molition Ph	ase				
Tracked Excavator	8	50%	59 dB(A)		2m Noise barrier between plant and Block F	
Vibratory Roller	8	50%	61 dB(A)	45 dBA (internal) / 55 dBA (external)	2m Noise barrier between plant and Block F	
Dump Truck	40	25%	54 dB(A)		2m Noise barrier between plant and Block F	
Total			64 dB(A)	45 dBA (internal) / 55 dBA (external)		
Construction & Fitou	t Works Ph	ase				
Circular Saw	20	25%	61 dB(A)		2m Noise barrier between plant and Block F	
Nail Gun	15	50%	57 dB(A)	45 dBA (internal) / 55 dBA (external)	2m Noise barrier between plant and Block F	
Diesel Generator	13	50%	51 dB(A)		2m Noise barrier between plant and Block F	
Total			63 dB(A)	45 dBA (internal) /	55 dBA (external)	
Structural Works Pho	se					
Tracked Excavator	8	50%	58 dB(A)	45 dBA (internal) /	2m Noise barrier between plant and Block F	
Dump truck	40	25%	53 dB(A)	55 dBA (external)	2m Noise barrier between plant and Block F	

EQUIPMENT	DISTANCE [M]	ON-TIME	PREDICTED CONSTRUCTION NOISE LEVEL	EXTERNAL NOISE Management level (External) ³	MITIGATION MEASURES
Mini piling rig	8	50%	63 dB(A)		2m Noise barrier between plant and Block F
Concrete Pump	25	50%	51 dB(A)		2m Noise barrier between plant and Block F
Total	•		65 dB(A)	45 dBA (internal) /	55 dBA (external)

Due to the closeness of Blocks E and F to the construction site, mitigation is difficult. As these receivers are under the control of Dundas Public School, some specific mitigation measures can be adopted to ensure that impacts to the users of Blocks E and F are minimised. The following mitigation measures are proposed to ensure that noise levels can be maintained to under 45 dBA internally when in use:

- Combined construction noise levels are generally predicted to exceed 55 dBA externally even with mitigation measures taken, however the individual noise levels for each activity do meet the criteria, particularly at Block E. Scheduling of loud works should be done so that they do not occur at the same time when the classrooms are in use should be done where possible.
- Scheduling classrooms close to the construction in Blocks E and F to be vacant while particularly loud works occur, particularly with Block F.
- Use of 2m high noise barriers to the buildings and exposed areas
 - Noise barriers can also be installed at the buildings as well as around the construction site. Currently only noise barriers around the site have been accounted for so this would give additional reductions.
 - The noise barrier is to be constructed of 15 kg/m2 solid material and be sealed at the bottom and sides to be fully enclosed.
- Closing classroom windows while loud works occur. This is expected to happen regardless due to dust and debris which may occur during the course of construction.

In addition to the above, it should be noted that the 10 dB reduction through the façade assumed for the 55 dBA external criteria is relatively conservative for a structure with closed windows. Realistically, this reduction is likely to be closer to 20 dB depending on the structure, with a 65 dBA external noise limit the works will be compliant with the 45 dBA internal level.

7.3 PREDICTED CONSTRUCTION VIBRATION

It is important to note that construction vibration levels depend on several factors, such as: activity, type of machine, geology of the ground and the distance between the affected buildings and the source. Surface works are expected to have a lower vibration impact than ground compacting/breaking works.

For the activity, earthworks are the only activity likely to cause some vibration, particularly earth compaction works which may require a vibratory roller compactor.

Compliance with vibration limits for building damage is expected based on ensuring ground compacting equipment is selected to adherer to minimum safe working distances. While these magnitudes do not predict cosmetic/structural damage, it is anticipated that human response/comfort would be impacted at these distances.

The current RMS Construction Noise and Vibration Guideline sets safe working distances for vibrating plant and equipment. These are summarised below in Table 20. For this size of works, the use of large hydraulic hammers would not be recommended for these works. Hence it is recommended that the use of smaller rock breakers and handheld jackhammers are used for activity close to the nearest affected residential receivers.

TABLE 20 RMS PLANT VIBRATION SAFE OPERATING DISTANCES - Construction Noise and Vibration Guideline 2016

		MINIMUM WORKING DISTANCE			
PLANT ITEM	RATING/DESCRIPTION	Cosmetic Damage (BS 7385)	Human Response (OH&E Vibration Guideline)		
Small Hydraulic Hammer	(300 kg - 5 to 12t excavator)	2 m	7 m		
Jackhammer	Handheld	1 m (nominal)	2 m		

Vibration predictions on Piling and reinstatement works are included below, using Table E.1 Empirical Predictors for groundborne vibration arising from mechanized construction works of the BS 5228 – 2.2009 part II Vibration. TABLE 21 EARTHWORKS ESTIMATED VIBRATION LEVELS AS PER TABLE E.1 OF THE BS 5228-2.2009

EQUIPMENT	VIBRATION LEVEL PPV (mm/s)	SOURCE
Steady state for vibratory compaction, 3m setback distance	4.5 mm/s	Table E1. BS 5228- 2:2009

Notes: These levels were calculated (based on the below:

• Critical amplitude of vibration, scaling factor Ks of 143, 33% probability of predicted value being exceeded and 1 m drums width). BS 5228:2009 recommends that for vibrations over 1.0mm/s affected residents should be given prior warning and explanation as to the cause of the vibration.

The above levels meet the construction vibration criteria (residential structures, 5 mm/s) as per DIN 4150 - 3. These values are not likely going to produce complains on the neighbours and are below all the maximum recommended vibration values as depicted in the criteria section.

7.4 GENERAL RECOMMENDATIONS ON CONSTRUCTION NOISE AND VIBRATION MANAGEMENT

Predicted construction noise levels were determined not to exceed the 'Highly Noise Affected' noise levels, which have been specified in the Interim Guide for Construction Noise (ICNG). However, the Interim Guide for Construction Noise (IGCN) list a number of typical best practice measures which can be used to reduce construction related impacts. In addition, Australian Standards 2436-2010 provides best practice measures to mitigate construction noise and vibration.

Although not mandatory, the following recommendations should be also considered as good practice measures to limit the construction noise and vibration impacts of the site:

7.4.1 GENERAL/SITE MANAGEMENT ISSUES

- All employees, contractors and subcontractors are to receive an environmental induction and should
 instruct all persons at the site with regard to all relevant project specific and standard noise mitigation
 measures, including but not limited to permissible hours or work, limitation of high noise generating
 activities, location of nearest affected noise receivers, construction employee parking areas, designated
 loading/unloading areas and procedures, site opening/closing times (including deliveries) and
 environmental incident procedures.
- A dedicated person will form a point of contact for dissemination of general information regarding site operations. Contact persons will also be defined to receive comment or complaints from the community.

7.4.2 CONSTRUCTION ACTIVITIES AND NOISE MITIGATION

The following general construction noise source control measures may be required:

• Extended construction hours are not recommended, for evening hours, less intrusive works will be scheduled to be carried out and/or works will be carried out away from sensitive receivers;

- Activities that approach the highly noise affected criteria for the residential receivers to be carried out during times where receivers are less sensitive to noise;
- Avoid unnecessary revving of engines and turn off plant that is not being used/required;
- Where possible organise the site so that delivery trucks and haulage trucks only drive forward to avoid the use of reversing alarms;
- Where possible, avoid using tonal reverse alarm outside standard construction hours;
- Organise and schedule the equipment operations to limit the noisiest machines operating simultaneously;
- Site set up/ movement of plant / delivery of material/ waste removal to site should generally be restricted to day period;
- Truck drivers are to be informed of site access routes, acceptable delivery hours and must minimise extended periods of engine idling;
- Ensure there is no unnecessary shouting or loud stereo/radios on site. There must be no dropping of metal from heights, throwing of metal items or slamming of doors;
- Use less noise intensive equipment where reasonable and feasible;
- Where practical fixed plant should be positioned as far as possible from the sensitive receivers;
- Use temporary site buildings and material stockpile as noise barrier;
- Employ the use of solid barrier plywood hoardings if required;

8 SUMMARY OF NOISE AND VIBRATION MITIGATION STRATEGIES

8.1 NOISE MITIGATION STRATEGIES

This section compiles the proposed recommended treatments and strategies mentioned throughout the report to mitigate noise from the activity.

8.1.1 NOISE AND VIBRATION MITIGATION MEASURES – OPERATIONAL

TABLE 22: OPERATIONAL NOISE MITIGATION MEASURES

MITIGATION NUMBER/NAME	SECTION REFERENCE	MITIGATION MEASURE	REASON FOR MITIGATION MEASURE
Mechanical Equipment Selection	Section 6.2	The mechanical equipment should be selected such that the combined sound pressure levels at 1m do not exceed 71 dBA (and other levels listed in Section 6.2)	To ensure noise from mechanical equipment does not exceed the noise limits

8.1.2 NOISE AND VIBRATION MITIGATION MEASURES – CONSTRUCTION

TABLE 23: CONSTRUCTION MITIGATION MEASURES

MITIGATION NUMBER/NAME	DURATION	MITIGATION MEASURE	REASON FOR MITIGATION MEASURE
Construction Hours	During the course of the construction period	Construction hours are recommended to be limited to those outlined in Section 7.	To ensure construction hours avoid times where construction noise criteria are more stringent
Construction Noise Barriers	During the course of the construction period	Installation of a solid noise barrier to the nearby sensitive receivers as outlined in Section 7.2	To ensure construction noise levels can meet the noise limit criteria and minimise disturbance to nearby receivers
Construction Noise Equipment On-Time Control	During the course of the construction period	The on-time allowances as outlined in Section 7.2 are to be followed	To ensure construction noise levels can meet the noise limit criteria
Classroom Use Scheduling	During the course of the construction period, particularly when loud works occur	Nearby classrooms are recommended to be scheduled to not be used during periods when particularly loud works occur as outlined in Section 7.2	To ensure that construction noise does not disrupt classes
Classroom Window Closing during Construction Hours	During the course of the construction period, particularly when loud works occur	Nearby classrooms are recommended to have windows and doors closed when particularly loud works occur as outlined in Section 7.2	To ensure that construction noise does not disrupt classes
Use of Low Energy Equipment	During course of the construction period	Where possible, lower energy equipment is recommended to limit noise and vibration emissions from construction works. This is particularly important for equipment like rock breakers and jackhammers (if required) close to the near affected residential receivers	To ensure construction activities minimise disruption to nearby receivers

9 CONCLUSIONS

This Acoustic report considers that the proposed activity at Dundas Public School is acceptable from a noise / vibration perspective according to the state and local regulations. The following summarises the findings of our assessment:

- Operational noise and vibration meet the relevant Parramatta LEP/DCP and NPfl criteria with some mitigation in the form of attenuators on the HVAC fans.
- Construction noise will meet the criteria and are all predicted to be less than the highly noise affected criteria of 75 dBA with the mitigation measures listed, including time management of works and noise barriers.

Construction vibration will meet the DIN4150-3 criteria.

CONTACT US

AUSTRALIA

ADELAIDE

T: +61 8 8290 6800 E: adelaide@ndy.com

BRISBANE

T: +61 7 3120 6800 E: brisbane@ndy.com

CANBERRA

T: +61 2 6295 1788 E: canberra@ndy.com

GOLD COAST

T: +61 7 5512 1235 E: goldcoast@ndy.com

MELBOURNE

T: +61 3 9862 6800 E: melbourne@ndy.com

PERTH

T: +61 8 9281 6800 E: perth@ndy.com

SYDNEY

T: +61 2 9928 6800 E: sydney@ndy.com

CANADA

VANCOUVER

T: +1 604 734 9338 E: vancouver@ndy.com

NEW ZEALAND

AUCKLAND

T: +64 9 307 6596 E: auckland@ndy.com

WELLINGTON

T: +64 4 471 0151 E: wellingtonadmin@ndy.com

UNITED KINGDOM

LONDON

T: +44 20 7553 9494 E: london@ndy.com

IRELAND

DUBLIN

T: +353 1 264 6995 E: dublin@ndy.com

To find out more about NDY go to **ndy.com** or follow us on LinkedIn

CONFIDENTIAL INFORMATION: This document is given with the understanding that the information within is private. Please keep it confidential and don't share with anyone else. Take proper care to make sure that others can't see or access this document. It's meant only for you.

DISCLAIMER OF LIABILITY: The information in this document is provided under direction of the client and follows their instructions. Any third party reviewing the content should make their own assessment on whether the information is appropriate to them. NDY makes no assurance the information meets the needs of a third party and does not accept liability for any loss or damage incurred by third parties as a result of using the information.

COPYRIGHT © NDY Group 2025: No part of this document can be copied or sent without written permission from NDY. All rights are reserved.